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Abstract. We propose an efficient and accurate head orientation esti-
mation algorithm using a monocular camera. Our approach is leveraged
by deep neural network and we exploit the architecture in a data regres-
sion manner to learn the mapping function between visual appearance
and three dimensional head orientation angles. Therefore, in contrast to
classification based approaches, our system outputs continuous head ori-
entation. The algorithm uses convolutional filters trained with a large
number of augmented head appearances, so it is user independent and
it covers large pose variation. Our key observation is that an input im-
age having 32 × 32 resolution is enough to achieve about 3 degree of
mean square error, which can be used for efficient head orientation ap-
plications. Therefore, our architecture takes only 1ms on the roughly
localized head positions with the aid of GPU. We also propose particle
filter based post-processing to enhance stability of the estimation further
in video sequences. We compare the performance with the state-of-the-
art algorithm which utilizes depth sensor and we validated our head
orientation estimator on the Internet photos and video.

1 Introduction

Head pose estimation is crucial for face related applications such as face recog-
nition, facial expression recognition, driver state monitoring, gaze estimation,
etc. Accordingly, a variety of methods have been proposed for more than two
decades [1]. In the context of computer vision, head pose estimation is inferring
the position and orientation (roll, pitch, and yaw) of head from a face image.

Existing approaches can be categorized into two methods: appearance based
methods and model based methods. Appearance based methods [2–12] use vi-
sual feature of the whole face appearance with machine learning techniques. The
methods are relatively robust to large head pose variation and low image resolu-
tion. However, most of them utilize discrete head poses for training and treat the
head pose estimation as a classification problem. As a result, the estimates are
quantized (typically more than 10◦) as well. Model based methods [13–18] use
geometric cues or non-rigid facial model. Those methods have advantages that
the outputs of them are continuous values; not discrete. Also they can obtain not
only head pose but also facial feature locations for various applications. How-
ever, since their performance is heavily rely on the facial features localization,
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the model based methods are sensitive to large variation of head pose and facial
expression, and low resolution of input image.

The objective of this paper is to do head orientation estimation that is ac-
curate, continuous, operating beyond real time, and robust to large variation of
head pose and low resolution. We achieve this by exploiting deep neural net-
work as a data regression manner. We demonstrate that the proposed estimator
outperforms previous literatures. Our approach is adequate for real time applica-
tions such as driver drowsiness detection, gaze estimation, and face verification.

2 Related Works

Appearance based methods These methods seeks relationship between 3D
face pose and its appearance on 2D image. Balasubramanian et al. [9] and Foytik
and Asari [2] presented manifold embedding frameworks which maps the high-
dimensional space of face appearance to low-dimensional manifolds. The latter
paper introduces a framework composed of two steps, in which head pose is es-
timated in a coarse-to-fine manner. Gruji et al. [8] utilized image retrieval which
compares an input image of head to a set of large exemplars. The initially es-
timated head orientation is refined using the candidate images in the database.
The reported test error of [2, 8] on Pointing’04 dataset [19] is larger than 13◦.
Huang et al. [5] used Gabor feature based random forests as the discrete label
classifier. They combined the random forest with linear discriminative analysis
(LDA) to improve the discriminative power. Zhu and Ramanan [3] proposed a
unified model for face detection, head pose estimation, and facial landmark lo-
calization. They use a mixture of tree-structured part models to find topological
changes due to rotation along yaw axis. Though it conducts unified task, it clas-
sifies just few discrete yaw angles of head poses, and the computation takes few
seconds per VGA resolution image.

Compared to those discrete labeling approaches, BenAbdelkader [6] and Ji et
al. [4] treated head pose estimation as a nonlinear regression problem which com-
putes continuous 3D pose. Other approaches [10–12] exploited depth information
for continuous head pose estimation. Breitenstein et al. [10] aligned a range image
with reference poses. Their GPU implementation operates in 10 fps. Fanelli et
al. [12] introduced a random forest based voting framework for real-time and
continuous head pose estimation. They also extended it to 3D facial feature lo-
calization. They provide an head pose database containing tuples of color, depth
and ground truth head pose. The use of depth data has some advantages that
it can be available even at night and can generate 3D face model, but a spe-
cific device is required. Also the device cannot be used in outdoor because of its
sensing mechanism.

Model based methods In constrast to most of appearnce based methods,
model based methods output continuous head pose. Hu et al. [13] roughly esti-
mated face pose by using asymmetric distribution of facial components. The pose
is refined with 3D-to-2D geometrical model. Active shape models (ASM) [15]
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and active appearance models (AAM) [16] are very popular statistical models
of face. They was proposed for facial landmarks localization first, but have been
extended for estimating head pose [17]. Morency et al. [18] presented generalized
adaptive view-based appearance model (GAVAM) for stable head pose estima-
tion, which takes some benefits of automatic initialization, user-independence,
and key frame tracking. These methods generally depend on some specific facial
landmarks, so they are sensitive to initialization, large variation of head pose or
facial expression, occlusions, and resolution of input image.

Deep Convolutional Neural Network As graphic processing unit (GPU)
has been developed, and accessibility to big data has become easy, deep learning
techniques has been actively studied. Among those deep learning methods, con-
volutional neural network (CNN) [20] has been successfully applied to computer
vision tasks such as image classification [21], pedestrian detection [22], and image
denoising [23]. Recently, deep convolutional neural network (DNN) are widely
utilized for face related applications and body pose estimation as well. Sun et
al.[24] and Zhou et al. [25] introduced DNN into coarse-to-fine facial feature lo-
calization. The former paper proposed three-level cascaded structure composed
of one DNN and two shallow neural networks. They also analyzed on effects of
some schemes such as absolute value rectification and local weight sharing on
facial feature localization. Toshev and Szegedy [26] appiled DNN to human body
pose estimation, namely DeepPose. They designed DNN architecture composed
of regressor and refiner. The architecture are used for every body joints individ-
ually, and the outputs are linked to each other for building the body pose. They
report state-of-the art performance.

Inspired by recent success of DNN based approaches, we design an DNN ar-
chitecture for estimating head orientation. We found that DNN architecture is
appropriate for head orientation estimation. In our experiment, we observe that
it outperforms previous approach which exploits depth data while we use only
gray scale images. Especially, we analyze the effects of input image size, the
number of layers, and the number of feature maps. We suggest a novel head
orientation estimator showing remarkable accuracy in 1ms.

3 Preliminaries: Representation of Head Pose

Before introducing our approach, we provide preliminary discussion for describ-
ing and displaying head pose. Compared to 6D description of object’s pose which
is general, the head pose in image coordinate can be described as (xh, yh, ψ, θ, φ).
xh = (xh, yh) is head position in image coordinate and a triplet (ψ, θ, φ) stands
for the rotation angles of roll, pitch, and yaw. They are all bounded in [−π

2 ,
π
2 ]

and [0,0,0] denotes frontal view of the head. We use conventional definition of
(ψ, θ, φ) in right-handed Cartesian coordinates as shown in Fig. 1. According to
the definition, ψ and θ correspond to clockwise rotation angles about x-axis and
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Fig. 1. Representation of head orientation. We use conventional definition of roll, pitch
and yaw rotation directions shown in the left figure. Some examples of rotation angles
and their corresponding head images are shown in the right side. The dataset is provided
by Fanelli et al. [12].

y-axis. φ corresponds to counter clockwise rotation angle about z-axis. The 3D
head orientation matrix Rhead = RψRθRφ is then determined as

Rψ=

⎡
⎣1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎤
⎦, Rθ=

⎡
⎣ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦, Rφ=

⎡
⎣ cosφ − sinφ 0
sinφ cosφ 0
0 0 1

⎤
⎦. (1)

As a counter conversion, unique (ψ, θ, φ) is determined from Rhead as

(ψ, θ, φ) =

(
arctan(

R32

R33
), arctan(

−R31√
R2

32 +R2
33

), arctan(
R21

R11
)

)
, (2)

where Rij is the element of Rhead at i-th row and j-th column.
The head pose (xh, yh, ψ, θ, φ), can be visualized by a means of 3D axis and

a circle on yz plane around the head as shown in Fig. 6. To do so, we transform
(ψ, θ, φ) into Rhead and we project the axises and the circle onto the input image
by using an orthographic projection matrix:

P =

⎡
⎣R11 R12 R13 xh
R21 R22 R23 yh
0 0 0 1

⎤
⎦, (3)

where P is defined in homogeneous coordinate.

4 Proposed method

In this section, our head pose estimation approach is introduced. We assume that
we have head position and its corresponding scale. In our implementation, we
utilize robust head detection algorithm by Zhu et al. [3] which use tree structured
part model for elastic deformation.

4.1 Deep Learning Architecture for Head Orientation

We review convolutional neural network (CNN) briefly and introduce our design
for head orientation task. Figure 2 illustrates the proposed structure of DNN.
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Fig. 2. Proposed structure of deep neural network (referred as N2 in Table 1) for head
orientation estimation. It uses 32×32 pixels gray scale image as an input. The output
is head orientation (ψ, θ, φ).

The trained filters in DNN minimize the following loss error:

E(Xi;W ) =
∑
i

||Yi − f(Xi;W )||22, (4)

where i indicates an index of training samples, W is a set of weight values
in convolution filters, X is estimated angles (ψ, θ, φ), and Y means the target
(ground truth) of head orientation. Training CNN consists of two phases: predic-
tion and update. Prediction means feed forward through the network. Update
means evolving weights and biases between layers by error back-propagation. In
prediction phase, one convolutional layer accompanies three steps. First, con-
volution operation is performed on the input image with trained filters. Sec-
ond, the outputs of the convolutions are passed through an activation function.
Third, they are downscaled (sub-sampling) for introducing small translation in-
variance and improving generalization. Sub-sampling step can be disregarded
according to applications. In update phase, loss errors are calculated at the end
node (the output of the network). Based on the errors, the weights and biases
of the network are updated from the last layer to the first layer by stochastic
gradient descent (SGD). It is called backward propagation of errors (or back-
propagation). Hyperbolic tangent, sigmoid, and rectified linear unit (ReLU) [21]
functions are commonly used as the activation function. The sigmoid function
f(x) = (1+e−βx)−1 maps [−∞,+∞] → [0, 1], while hyperbolic tangent function
f(x) = tanh(x) maps [−∞,+∞] → [−1,+1]. Thus, the outputs from sigmoid
function are typically not close to zero on average, while average of the out-
puts from hyperbolic tangent function is close to zero. In this aspect, with a
normalized dataset whose mean and variance are 0 and 1 respectively, hyper-
bolic tangent function is recommendable due to convergence during gradient
descent [27]. ReLU tends to train faster than other activation functions [21].

From now, we introduce our DNN design for head orientation estimation. Our
DNN structure follows a principle introduced by Coates et al. [28]. According
to the literature, since our dataset may not cover head appearances of every
people, we use small filter size (5×5 which is smallest in convention) and smallest
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Fig. 3. Some trained filters and their outputs of an input image in the first convolu-
tional layer. The sizes of filters and the outputs are 5×5 and 28×28 pixels respectively.

convolutional stride (1 pixel). Regarding the number of layers, we follow insights
from [24], which states performance improves as number of layers increases (more
than 3 at least). The number of filters are also important factor on the accuracy.
Our design is composed of 4 convolutional layers having 16, 20, 20, and 120 filters
respectively, which produces an acceptable trade-off between the performance
and computational speed.

Our architecture takes an input image of 32 × 32 pixels which is relatively
small compared to other DNN architectures for other face applications [3, 24, 25,
29]. We normalize intensities of an input image, so that the mean and variance
are 0 and 1 respectively. This allows us to use hyper-tangent as the activation
function. Max-pooling is performed after convolutional layers. The outputs of
the first convolutional layer followed by max-pooling is the input of the second
convolutional layer. They are convolved with 20 filters of 5 × 5 pixels. In the
same manner, third and forth convolutional layers take as input the output of
a previous layer, and convolved it with 20 and 120 filters of 5 × 5 and 3 × 3
pixels respectively. The max-pooling is not conducted in the third and fourth
convolutional layer. The l-th convolutional layer is defined as

X l+1
v = tanh

(
I∑

u=1

W l
uv ⊗X l

u + blv

)
, (5)

where W l
uv and X l

u are the trained filter and the image patch, and u and v
indicate the index of input and output channel respectively. For example, in
the first convolutional layer, u = 1 and v ∈ {1, · · · , 16}. Therefore, X l+1

v is the
output from v-th channel which is the input to the (l + 1)-th layer. bv means
the bias vectors, and ⊗ denotes convolution operator. Figure 3 shows some of
the trained filters in the first convolutional layer. Note that the features are not
correlated, and edges and some important parts for estimating head orientation
(e.g. eye, nose, and chin) are enhanced in their output.

The first and second fully connected layers following convolutional layers
are composed of 120 and 84 neurons respectively. The fully connected layer is
performed with function yj = tanh

(∑m−1
i=0 xi ·wi,j + bj

)
, for j ∈ {0, · · · , n− 1},

where m and n are the number of neurons at the previous layer and current
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layer respectively. Equation (4) is non-linear due to the activation function. We
solve it by back-propagation method using stochastic gradient descent (SGD) as
in [21].

4.2 Temporally Stable Head Pose Estimation

Given an input video, if we handle input frames independently, the estimated
head orientation may be temporally unstable since the appearance of head often
changes abruptly due to shadow or occlusions. In order to obtain stable head ori-
entation in the time domain, we apply Bayesian sequential estimation which uses
past observation to update the posterior distribution and to predict the current
state. The distribution required for filtering procedure can be effectively approx-
imated by sequential Monte Carlo estimation, or known as particle filter [30].
We empirically choose particle filter instead of linear filter such as Kalman due
to high non-linearity of state changes. We operate two particle filters, which are
for head orientation and head position due to the multi-modality and weak cor-
relation between the two states. For propagating particles, we use a first-order
dynamic model which regards constant angular or positional displacements over
the period [t− 1, t]. In this manner, head orientation state o = (s,d) is updated
as:

st = st−1 + dt−1Δt+ εs, (6)

dt = dt−1 + εd, (7)

where s := (ψ, θ, φ) represents head orientation state, d := (dψ, dθ, dφ) are an-
gular displacements, subscript t notes time stamp at t, and εs,d are process
noise come from zero-mean Gaussian distribution. We exploit the bootstrap fil-
ter where the density of state transition is used for estimating the probability
function [31]. The importance weight wit,ang for i-th particle oit is described by:

wit,ang ∝ wit−1,ang × p(ot,obs|oit), (8)

where ot,obs = (st,obs,dt,obs) is a new observation at t and oit is propagated
particles. wt−1,ang can be regarded as constant since resampling is performed on
the fixed number of particles. We define wit,ang as:

wit,ang = exp

(‖ot,obs − oit‖2
σ2
ang

)
, (9)

Note that we have another state h = (x, y, vx, vy) which represents head
position and its velocity in image domain. For this state, the importance weight
wt,pos for particle hi is defined as:

wit,pos = exp

(
f(xi, yi)2

σ2
pos

)
, (10)

where f(·) is 2D confidence map built up by head detector. Since h also uses
constant velocity model, it is similarly updated as Eq. (6) and Eq. (7).
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5 Experimental Result

In this section, we provide experimental results in various aspects. First, we
evaluate networks while altering parameters of the networks such as the number
of feature maps and size of input image with the depth of networks. We will also
discuss the effect of particle filter as a post processing. Finally, the proposed
method will be compared with the state-of-the-art method [12].

5.1 Dataset for Evaluation

We evaluate our method using Biwi Kinect Head Pose Database [12]. The dataset
contains 15,678 upper body images of 20 people (4 people were recorded twice
but they appear different hair style and clothing), and ground truth head pose
information from user-specific 3D template based head tracker [32]. It provides
3D rotation matrix for head orientation. By using Eq. (2), we convert the rotation
matrix into (ψ, θ, φ). The triplet is used for training described in Sec. 4. The head
orientation covers about ±75◦ for yaw, ±60◦ for pitch, and ±50◦ for roll. The
dataset provides depth to facial center as well. From the perspective camera
model without lens distortion, the size of head image patch is determined as fR

Z
where f is focal length, R is radius of head, Z is metric depth to head center.
We use R = 120mm and fix it over the evaluation. The extracted head images
are resized to 100× 100 pixels.

Among 15,678 patches, we randomly selected a subset of 2,187 patches as
our validation set, and remaining 13,500 patches were used for training. For the
training samples, we first did data augmentation on the extracted patches to
avoid over-fitting. We did this by randomly cropping the extracted patches. The
size of smaller patch varies from 86×86 to 100×100 pixels. Then, the augmented
patches are resized to 32 × 32 pixels for the proposed DNN. At test time, five
patches of 86× 86 pixels are extracted from each 100× 100 pixels of input patch
(four from each corner patch and one from center). The five patches are also
resized to 32× 32 pixels. Note that the size of input patch can be 64× 64 pixels
as well, which will be discussed in Sec. 5.2. All training and test patches are gray-
scaled and their intensity values are modified by histogram normalization. We
used GPU accelerated implementation, and training continues until converge.

5.2 Analysis on Various Network Structures

In order to find most efficient and effective network, we design various types of
DNN structures with different parameters (the number of feature maps, and the
size of an input image, and the number of convolutional layers) on estimating
head orientation. Note that the image size decreases when it passes each layer.
Therefore, the number of layer and size of input have dependency. Our selected
configurations are summarized in Table 1. N2 containing four convolutional lay-
ers is the proposed DNN structure illustrated in Figure 2. The networks N1–N4
include four convolutional layers, and perform with the input images of 32× 32
pixels. The networks N5–N8 contain five convolutional layers, with the input
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Table 1. Summary of DNN structures. I(s, s) denotes a square input image of s pixels
on a side. C(k, n) means convolutional layer with square filters of k pixels on a side,
where n is the number of filters. Pooling layer is denoted by P (p), where p is the size of
the square pooling regions. F (e) indicates fully connected layer, where e is the number
of neurons.

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
N1 I(32,32) C(5,30) P(2) C(5,30) P(2) C(3,30) C(3,120) F(84) F(3)
N2 I(32,32) C(5,16) P(2) C(5,20) P(2) C(3,20) C(3,120) F(84) F(3)
N3 I(32,32) C(5,10) P(2) C(5,20) P(2) C(3,20) C(3,120) F(84) F(3)
N4 I(32,32) C(5,10) P(2) C(5,10) P(2) C(3,10) C(3,120) F(84) F(3)
N5 I(64,64) C(5,30) P(2) C(5,30) P(2) C(4,30) P(2) C(3,30) C(3,120) F(84) F(3)
N6 I(64,64) C(5,16) P(2) C(5,20) P(2) C(4,20) P(2) C(3,20) C(3,120) F(84) F(3)
N7 I(64,64) C(5,10) P(2) C(5,20) P(2) C(4,20) P(2) C(3,20) C(3,120) F(84) F(3)
N8 I(64,64) C(5,10) P(2) C(5,10) P(2) C(4,10) P(2) C(3,10) C(3,120) F(84) F(3)
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Fig. 4. Mean and standard deviation of the errors, and processing speed of various
networks defined in Table 1.

images of 64 × 64 pixels. Figure 4 and Table 2 show the performance of the
networks in Table 1.

Figure 4 shows the comparison results on mean and standard deviation of the
errors. Processing time shown in Fig. 4 over the eight DNN structures are tested
on NvidiaTM GTX Titan Black 6GB GPU. Results show that the performance
can be slightly improved when the networks has more than four convolutional
layers and uses high quality input images of 64 × 64 pixels. However, in these
networks, the processing is much slower. It seems that four convolutional layers
with low quality images of 32×32 pixels are satisfied for accurate head orientation
estimation. 32×32 resolution is approximately two times smaller than [29] which
is designed for recovering canonical view with important parts of face images.
In face orientation problem, we believe relative location of chin, nose and eyes
regardless of the individual person still works as a useful cue in 32×32 resolution,
even though they are not shown obviously. In addition, due to the reduced
dimensions, we could achieved impressive computational time. When comparing
the networks having the same depth, as the number of feature maps increases,
the result tends to be improved. However, since the processing time is increased
as well, deciding the number of feature maps depends on its applications.
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Table 2. Mean and standard deviation of the errors, and processing time of vari-
ous networks. N1-N4 structures are composed of four convolutional layers, and N5-N8
structures consists of five convolutional layers.

Mean error ± standard deviation (◦)
time (ms)Roll Pitch Yaw

N1 2.4±2.2 2.9±2.5 2.4±2.3 1.60
N2 2.6±2.5 3.4±2.9 2.8±2.4 0.98
N3 2.9±2.7 2.9±3.1 2.9±2.7 0.87
N4 3.1±2.9 3.7±3.3 3.3±2.8 0.78

N5 2.2±2.1 2.7±2.4 2.3±2.2 7.00
N6 2.5±2.3 2.7±2.4 2.6±2.2 3.30
N7 2.5±2.4 3.0±2.6 2.7±2.5 2.41
N8 2.9±2.7 3.8±3.3 3.2±2.8 1.71

5.3 Temporally Stable Head Orientation Estimation

We validate our particle filter based module described in Sec. 4.2 on the Robe-
Safe [33] dataset. The video contains the driver who moves the head smoothly
during driving. Note that the driver is not used for training in our pipeline.
Figure 5 shows estimated head orientation over some periods. The estimated
head orientation however, shows inconsistent orientation over adjacent time due
to abrupt change of the appearance and occlusion (around 15th frame in the
Fig. 5) not by the physical head movement.

5.4 Comparison with Fanelli et al. [12]

We compare with the state-of-the-art approach for real time head pose esti-
mation, which uses random forest regression with depth sensor, Kinect. They
provide and use the same dataset in our experiments. Table 2 shows comparison
results on mean and standard deviation of the errors, and processing time of
both [12] and ours. Note that all the results on accuracy and precision from the
networks we design (Table 2) significantly outperform those of the state-of-the-
art approach. While the method in [12] compares internal depth values from
extracted random patches for voting head poses, our DNN based approach uses
filters automatically learned from many training images without handcraft low
level features (intensity difference, edge etc.). It results in implicitly extracting
important high level information (relative position of eyes, nose, chin etc.). In
addition, the approach using depth value from Kinect sensor may affected by
noise and the low-resolution of the depth map. In contrast, the level of noise in
grey scale image is lesser than that of depth map, which is another benefit we
get. Some examples of estimate are shown in Figure 6, where the center of the
white circle is on head center, and its radius is 120mm. It demonstrates that our
method is reasonable even though the person has various facial expressions and
poses. We believe that it is resulted from large training database which consists
of various facial expressions and poses. Given roughly localized head position,
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Fig. 5. Validation on RobeSafe driver mornitoring dataset [33]. The method in Sec. 4.2
stabilizes abrupt changes of head orientation which is occurred by shadow and occlusion
not by physical movement of the head. The comparison of the head orientations without
and with particle filtering is displayed.

our approach requires less than 1ms to process for estimating head orientation.
For comparing computational time, we borrow the reported time in [12], al-
though [12] performs face detection and head orientation simultaneously. Since
[12] finds a head region abruptly by thresholding depth values, their reported
time is mainly for processing depth values for head orientation.

Figure 7 illustrates the normalized success rates of the estimations on the
validation set for each 15 × 15 degree. Angular error below 15◦ regraded as
success, and the background color of the the heat map reflects the number of
images present in each region. In almost all regions, the estimates show the
results of 100% or close to 100% success rates, which outperform the equivalent
plot in [12]. Also, it shows that the algorithm works well over large variations of
head orientation.

6 Conclusion

In this work, we introduce an efficient and accurate method for estimating head
orientation. Inspired by the remarkable success of deep neural network which au-
tomatically learns desirable feature, we design network structure which achieves
notable performance and speed to the best ever known algorithm. We tested
our algorithm on various types of video and photos. The possible application
scenarios are measuring driver’s attention, robust face recognition and saliency
estimation. Our future work is designing a general-purpose head detection algo-
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Fig. 6. Our head orientation estimation on validation set [12] (first row) and the web
photos (second row).

Table 3. Comparison with Fanelli et al. [12] on mean and standard deviation of the
errors, and processing time. The test environment used in [12] is a 2.67GHz Intel Core
i7 CPU, and ours is the same level of CPU with NvidiaTM GTX Titan Black 6GB
GPU. Our time is only for estimating head orientation whereas [12] includes time for
abrupt face detection using depth map.

Mean error ± standard deviation (◦)
Time (ms)Roll Pitch Yaw

Fanelli stride 5 5.4±6.0 3.5±5.8 3.8±6.5 44.7
Fanelli stride 10 5.5±6.2 3.6±6.0 4.0±7.1 17.8
Fanelli stride 15 5.5±6.2 3.8±6.4 4.2±7.8 10.7

Ours N2 2.6±2.5 3.4±2.9 2.8±2.4 0.98

rithm as well to make a comprehensive deep neural network for 5D head pose
estimation. We expect that the complete system will boost up the accuracy and
usefulness in practice.
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